We have indeterminateness of type
0/0,
i.e. limit for the numerator is
x→0+limtan(7x)=0and limit for the denominator is
x→0+limcot(2x)1=0Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
x→0+lim(tan(7x)cot(2x))=
x→0+lim(dxdcot(2x)1dxdtan(7x))=
x→0+lim(2cot2(2x)+27tan2(7x)cot2(2x)+7cot2(2x))=
x→0+lim(2cot2(2x)+27tan2(7x)cot2(2x)+7cot2(2x))=
27It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)