$$\lim_{x \to \frac{\pi}{4}^+} \cot{\left(2 x \right)}$$
0
$$0$$
= 6.12323399569652e-17
lim cot(2*x)
pi
x->---
4
$$\lim_{x \to \frac{\pi}{4}^-} \cot{\left(2 x \right)}$$
0
$$0$$
= 6.12323399577702e-17
= 6.12323399577702e-17
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{4}^-} \cot{\left(2 x \right)} = 0$$ More at x→pi/4 from the left $$\lim_{x \to \frac{\pi}{4}^+} \cot{\left(2 x \right)} = 0$$ $$\lim_{x \to \infty} \cot{\left(2 x \right)} = \cot{\left(\infty \right)}$$ More at x→oo $$\lim_{x \to 0^-} \cot{\left(2 x \right)} = -\infty$$ More at x→0 from the left $$\lim_{x \to 0^+} \cot{\left(2 x \right)} = \infty$$ More at x→0 from the right $$\lim_{x \to 1^-} \cot{\left(2 x \right)} = \frac{1}{\tan{\left(2 \right)}}$$ More at x→1 from the left $$\lim_{x \to 1^+} \cot{\left(2 x \right)} = \frac{1}{\tan{\left(2 \right)}}$$ More at x→1 from the right $$\lim_{x \to -\infty} \cot{\left(2 x \right)} = - \cot{\left(\infty \right)}$$ More at x→-oo