Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (e^x-e^2)/(-2+x)
Limit of (-asin(x)+2*x)/(2*x+atan(x))
Limit of 2^(-n)*2^(1+n)
Limit of (-6+x^2-x)/(9+x^2-6*x)
Graphing y =
:
cos(x)^cot(2*x)
Identical expressions
cos(x)^cot(two *x)
co sinus of e of (x) to the power of cotangent of (2 multiply by x)
co sinus of e of (x) to the power of cotangent of (two multiply by x)
cos(x)cot(2*x)
cosxcot2*x
cos(x)^cot(2x)
cos(x)cot(2x)
cosxcot2x
cosx^cot2x
Similar expressions
cosx^cot(2*x)
Limit of the function
/
cos(x)^cot(2*x)
Limit of the function cos(x)^cot(2*x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
cot(2*x) lim cos (x) x->0+
lim
x
→
0
+
cos
cot
(
2
x
)
(
x
)
\lim_{x \to 0^+} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
x
→
0
+
lim
cos
c
o
t
(
2
x
)
(
x
)
Limit(cos(x)^cot(2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
1e21
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
0
−
cos
cot
(
2
x
)
(
x
)
=
1
\lim_{x \to 0^-} \cos^{\cot{\left(2 x \right)}}{\left(x \right)} = 1
x
→
0
−
lim
cos
c
o
t
(
2
x
)
(
x
)
=
1
More at x→0 from the left
lim
x
→
0
+
cos
cot
(
2
x
)
(
x
)
=
1
\lim_{x \to 0^+} \cos^{\cot{\left(2 x \right)}}{\left(x \right)} = 1
x
→
0
+
lim
cos
c
o
t
(
2
x
)
(
x
)
=
1
lim
x
→
∞
cos
cot
(
2
x
)
(
x
)
\lim_{x \to \infty} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
x
→
∞
lim
cos
c
o
t
(
2
x
)
(
x
)
More at x→oo
lim
x
→
1
−
cos
cot
(
2
x
)
(
x
)
=
cos
1
tan
(
2
)
(
1
)
\lim_{x \to 1^-} \cos^{\cot{\left(2 x \right)}}{\left(x \right)} = \cos^{\frac{1}{\tan{\left(2 \right)}}}{\left(1 \right)}
x
→
1
−
lim
cos
c
o
t
(
2
x
)
(
x
)
=
cos
t
a
n
(
2
)
1
(
1
)
More at x→1 from the left
lim
x
→
1
+
cos
cot
(
2
x
)
(
x
)
=
cos
1
tan
(
2
)
(
1
)
\lim_{x \to 1^+} \cos^{\cot{\left(2 x \right)}}{\left(x \right)} = \cos^{\frac{1}{\tan{\left(2 \right)}}}{\left(1 \right)}
x
→
1
+
lim
cos
c
o
t
(
2
x
)
(
x
)
=
cos
t
a
n
(
2
)
1
(
1
)
More at x→1 from the right
lim
x
→
−
∞
cos
cot
(
2
x
)
(
x
)
\lim_{x \to -\infty} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
x
→
−
∞
lim
cos
c
o
t
(
2
x
)
(
x
)
More at x→-oo
One‐sided limits
[src]
cot(2*x) lim cos (x) x->0+
lim
x
→
0
+
cos
cot
(
2
x
)
(
x
)
\lim_{x \to 0^+} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
x
→
0
+
lim
cos
c
o
t
(
2
x
)
(
x
)
1
1
1
1
= 1.0
cot(2*x) lim cos (x) x->0-
lim
x
→
0
−
cos
cot
(
2
x
)
(
x
)
\lim_{x \to 0^-} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
x
→
0
−
lim
cos
c
o
t
(
2
x
)
(
x
)
1
1
1
1
= 1.0
= 1.0
Rapid solution
[src]
1
1
1
1
Expand and simplify
Numerical answer
[src]
1.0
1.0
The graph