Mister Exam

Other calculators:


cos(x)^cot(2*x)

Limit of the function cos(x)^cot(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        cot(2*x)   
 lim cos        (x)
x->0+              
limx0+coscot(2x)(x)\lim_{x \to 0^+} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
Limit(cos(x)^cot(2*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101001e21
Other limits x→0, -oo, +oo, 1
limx0coscot(2x)(x)=1\lim_{x \to 0^-} \cos^{\cot{\left(2 x \right)}}{\left(x \right)} = 1
More at x→0 from the left
limx0+coscot(2x)(x)=1\lim_{x \to 0^+} \cos^{\cot{\left(2 x \right)}}{\left(x \right)} = 1
limxcoscot(2x)(x)\lim_{x \to \infty} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
More at x→oo
limx1coscot(2x)(x)=cos1tan(2)(1)\lim_{x \to 1^-} \cos^{\cot{\left(2 x \right)}}{\left(x \right)} = \cos^{\frac{1}{\tan{\left(2 \right)}}}{\left(1 \right)}
More at x→1 from the left
limx1+coscot(2x)(x)=cos1tan(2)(1)\lim_{x \to 1^+} \cos^{\cot{\left(2 x \right)}}{\left(x \right)} = \cos^{\frac{1}{\tan{\left(2 \right)}}}{\left(1 \right)}
More at x→1 from the right
limxcoscot(2x)(x)\lim_{x \to -\infty} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
More at x→-oo
One‐sided limits [src]
        cot(2*x)   
 lim cos        (x)
x->0+              
limx0+coscot(2x)(x)\lim_{x \to 0^+} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
1
11
= 1.0
        cot(2*x)   
 lim cos        (x)
x->0-              
limx0coscot(2x)(x)\lim_{x \to 0^-} \cos^{\cot{\left(2 x \right)}}{\left(x \right)}
1
11
= 1.0
= 1.0
Rapid solution [src]
1
11
Numerical answer [src]
1.0
1.0
The graph
Limit of the function cos(x)^cot(2*x)