$$\lim_{x \to \frac{\pi}{6}^-}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \frac{1}{2} + \frac{\sqrt{3}}{2}$$
More at x→pi/6 from the left$$\lim_{x \to \frac{\pi}{6}^+}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \frac{1}{2} + \frac{\sqrt{3}}{2}$$
$$\lim_{x \to \infty}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→oo$$\lim_{x \to 0^-}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = 1$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→-oo