Mister Exam

Other calculators:


cos(x)+sin(x)

Limit of the function cos(x)+sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (cos(x) + sin(x))
   pi                  
x->--+                 
   6                   
$$\lim_{x \to \frac{\pi}{6}^+}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)$$
Limit(cos(x) + sin(x), x, pi/6)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{6}^-}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \frac{1}{2} + \frac{\sqrt{3}}{2}$$
More at x→pi/6 from the left
$$\lim_{x \to \frac{\pi}{6}^+}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \frac{1}{2} + \frac{\sqrt{3}}{2}$$
$$\lim_{x \to \infty}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→-oo
Rapid solution [src]
      ___
1   \/ 3 
- + -----
2     2  
$$\frac{1}{2} + \frac{\sqrt{3}}{2}$$
One‐sided limits [src]
 lim  (cos(x) + sin(x))
   pi                  
x->--+                 
   6                   
$$\lim_{x \to \frac{\pi}{6}^+}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)$$
      ___
1   \/ 3 
- + -----
2     2  
$$\frac{1}{2} + \frac{\sqrt{3}}{2}$$
= 1.36602540378444
 lim  (cos(x) + sin(x))
   pi                  
x->---                 
   6                   
$$\lim_{x \to \frac{\pi}{6}^-}\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)$$
      ___
1   \/ 3 
- + -----
2     2  
$$\frac{1}{2} + \frac{\sqrt{3}}{2}$$
= 1.36602540378444
= 1.36602540378444
Numerical answer [src]
1.36602540378444
1.36602540378444
The graph
Limit of the function cos(x)+sin(x)