Mister Exam

Other calculators:


cos(x)/x

Limit of the function cos(x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /cos(x)\
 lim |------|
x->0+\  x   /
limx0+(cos(x)x)\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{x}\right)
Limit(cos(x)/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-200200
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx0(cos(x)x)=\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{x}\right) = \infty
More at x→0 from the left
limx0+(cos(x)x)=\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{x}\right) = \infty
limx(cos(x)x)=0\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{x}\right) = 0
More at x→oo
limx1(cos(x)x)=cos(1)\lim_{x \to 1^-}\left(\frac{\cos{\left(x \right)}}{x}\right) = \cos{\left(1 \right)}
More at x→1 from the left
limx1+(cos(x)x)=cos(1)\lim_{x \to 1^+}\left(\frac{\cos{\left(x \right)}}{x}\right) = \cos{\left(1 \right)}
More at x→1 from the right
limx(cos(x)x)=0\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)}}{x}\right) = 0
More at x→-oo
One‐sided limits [src]
     /cos(x)\
 lim |------|
x->0+\  x   /
limx0+(cos(x)x)\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{x}\right)
oo
\infty
= 150.996688753824
     /cos(x)\
 lim |------|
x->0-\  x   /
limx0(cos(x)x)\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{x}\right)
-oo
-\infty
= -150.996688753824
= -150.996688753824
Numerical answer [src]
150.996688753824
150.996688753824
The graph
Limit of the function cos(x)/x