Mister Exam

Other calculators:


cos(x)/log(x)

Limit of the function cos(x)/log(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /cos(x)\
 lim |------|
x->oo\log(x)/
$$\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{\log{\left(x \right)}}\right)$$
Limit(cos(x)/log(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\cos{\left(x \right)}}{\log{\left(x \right)}}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{\cos{\left(x \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\cos{\left(x \right)}}{\log{\left(x \right)}}\right) = -\infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\cos{\left(x \right)}}{\log{\left(x \right)}}\right) = \infty$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\cos{\left(x \right)}}{\log{\left(x \right)}}\right) = 0$$
More at x→-oo
The graph
Limit of the function cos(x)/log(x)