cos(x) ------ log(x)
cos(x)/log(x)
Apply the quotient rule, which is:
and .
To find :
The derivative of cosine is negative sine:
To find :
The derivative of is .
Now plug in to the quotient rule:
Now simplify:
The answer is:
sin(x) cos(x)
- ------ - ---------
log(x) 2
x*log (x)
/ 2 \
|1 + ------|*cos(x)
2*sin(x) \ log(x)/
-cos(x) + -------- + -------------------
x*log(x) 2
x *log(x)
----------------------------------------
log(x)
/ 3 3 \
/ 2 \ 2*|1 + ------ + -------|*cos(x)
3*|1 + ------|*sin(x) | log(x) 2 |
3*cos(x) \ log(x)/ \ log (x)/
-------- - --------------------- - ------------------------------- + sin(x)
x*log(x) 2 3
x *log(x) x *log(x)
---------------------------------------------------------------------------
log(x)