Mister Exam

Other calculators:


cos(2*x)^3/x

Limit of the function cos(2*x)^3/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   3     \
     |cos (2*x)|
 lim |---------|
x->0+\    x    /
limx0+(cos3(2x)x)\lim_{x \to 0^+}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right)
Limit(cos(2*x)^3/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-200200
Rapid solution [src]
oo
\infty
One‐sided limits [src]
     /   3     \
     |cos (2*x)|
 lim |---------|
x->0+\    x    /
limx0+(cos3(2x)x)\lim_{x \to 0^+}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right)
oo
\infty
= 150.960268966734
     /   3     \
     |cos (2*x)|
 lim |---------|
x->0-\    x    /
limx0(cos3(2x)x)\lim_{x \to 0^-}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right)
-oo
-\infty
= -150.960268966734
= -150.960268966734
Other limits x→0, -oo, +oo, 1
limx0(cos3(2x)x)=\lim_{x \to 0^-}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = \infty
More at x→0 from the left
limx0+(cos3(2x)x)=\lim_{x \to 0^+}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = \infty
limx(cos3(2x)x)=0\lim_{x \to \infty}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = 0
More at x→oo
limx1(cos3(2x)x)=cos3(2)\lim_{x \to 1^-}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = \cos^{3}{\left(2 \right)}
More at x→1 from the left
limx1+(cos3(2x)x)=cos3(2)\lim_{x \to 1^+}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = \cos^{3}{\left(2 \right)}
More at x→1 from the right
limx(cos3(2x)x)=0\lim_{x \to -\infty}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = 0
More at x→-oo
Numerical answer [src]
150.960268966734
150.960268966734
The graph
Limit of the function cos(2*x)^3/x