Mister Exam

Other calculators:


cos(2*x)^3/x

Limit of the function cos(2*x)^3/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   3     \
     |cos (2*x)|
 lim |---------|
x->0+\    x    /
$$\lim_{x \to 0^+}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right)$$
Limit(cos(2*x)^3/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     /   3     \
     |cos (2*x)|
 lim |---------|
x->0+\    x    /
$$\lim_{x \to 0^+}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right)$$
oo
$$\infty$$
= 150.960268966734
     /   3     \
     |cos (2*x)|
 lim |---------|
x->0-\    x    /
$$\lim_{x \to 0^-}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right)$$
-oo
$$-\infty$$
= -150.960268966734
= -150.960268966734
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = \cos^{3}{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = \cos^{3}{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\cos^{3}{\left(2 x \right)}}{x}\right) = 0$$
More at x→-oo
Numerical answer [src]
150.960268966734
150.960268966734
The graph
Limit of the function cos(2*x)^3/x