Mister Exam

Other calculators:


cos(2*x)*sin(x)

Limit of the function cos(2*x)*sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (cos(2*x)*sin(x))
x->oo                 
$$\lim_{x \to \infty}\left(\sin{\left(x \right)} \cos{\left(2 x \right)}\right)$$
Limit(cos(2*x)*sin(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\sin{\left(x \right)} \cos{\left(2 x \right)}\right) = \left\langle -1, 1\right\rangle$$
$$\lim_{x \to 0^-}\left(\sin{\left(x \right)} \cos{\left(2 x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} \cos{\left(2 x \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\sin{\left(x \right)} \cos{\left(2 x \right)}\right) = \sin{\left(1 \right)} \cos{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\sin{\left(x \right)} \cos{\left(2 x \right)}\right) = \sin{\left(1 \right)} \cos{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\sin{\left(x \right)} \cos{\left(2 x \right)}\right) = \left\langle -1, 1\right\rangle$$
More at x→-oo
The graph
Limit of the function cos(2*x)*sin(x)