Mister Exam

Other calculators


cos(2*x)*sin(x)

Integral of cos(2*x)*sin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                   
 --                   
 2                    
  /                   
 |                    
 |  cos(2*x)*sin(x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{\frac{\pi}{2}} \sin{\left(x \right)} \cos{\left(2 x \right)}\, dx$$
Integral(cos(2*x)*sin(x), (x, 0, pi/2))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                              3            
 |                          2*cos (x)         
 | cos(2*x)*sin(x) dx = C - --------- + cos(x)
 |                              3             
/                                             
$${{\cos x}\over{2}}-{{\cos \left(3\,x\right)}\over{6}}$$
The graph
The answer [src]
-1/3
$$- \frac{1}{3}$$
=
=
-1/3
$$- \frac{1}{3}$$
Numerical answer [src]
-0.333333333333333
-0.333333333333333
The graph
Integral of cos(2*x)*sin(x) dx

    Use the examples entering the upper and lower limits of integration.