Mister Exam

Other calculators:


cos(3*x)

Limit of the function cos(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  cos(3*x)
x->pi+        
$$\lim_{x \to \pi^+} \cos{\left(3 x \right)}$$
Limit(cos(3*x), x, pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-1
$$-1$$
One‐sided limits [src]
 lim  cos(3*x)
x->pi+        
$$\lim_{x \to \pi^+} \cos{\left(3 x \right)}$$
-1
$$-1$$
= -1.0
 lim  cos(3*x)
x->pi-        
$$\lim_{x \to \pi^-} \cos{\left(3 x \right)}$$
-1
$$-1$$
= -1.0
= -1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \pi^-} \cos{\left(3 x \right)} = -1$$
More at x→pi from the left
$$\lim_{x \to \pi^+} \cos{\left(3 x \right)} = -1$$
$$\lim_{x \to \infty} \cos{\left(3 x \right)} = \left\langle -1, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-} \cos{\left(3 x \right)} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cos{\left(3 x \right)} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \cos{\left(3 x \right)} = \cos{\left(3 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cos{\left(3 x \right)} = \cos{\left(3 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cos{\left(3 x \right)} = \left\langle -1, 1\right\rangle$$
More at x→-oo
Numerical answer [src]
-1.0
-1.0
The graph
Limit of the function cos(3*x)