Mister Exam

Other calculators:


cos(1/z)

Limit of the function cos(1/z)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /1\
 lim cos|-|
z->0+   \z/
$$\lim_{z \to 0^+} \cos{\left(\frac{1}{z} \right)}$$
Limit(cos(1/z), z, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits z→0, -oo, +oo, 1
$$\lim_{z \to 0^-} \cos{\left(\frac{1}{z} \right)} = \left\langle -1, 1\right\rangle$$
More at z→0 from the left
$$\lim_{z \to 0^+} \cos{\left(\frac{1}{z} \right)} = \left\langle -1, 1\right\rangle$$
$$\lim_{z \to \infty} \cos{\left(\frac{1}{z} \right)} = 1$$
More at z→oo
$$\lim_{z \to 1^-} \cos{\left(\frac{1}{z} \right)} = \cos{\left(1 \right)}$$
More at z→1 from the left
$$\lim_{z \to 1^+} \cos{\left(\frac{1}{z} \right)} = \cos{\left(1 \right)}$$
More at z→1 from the right
$$\lim_{z \to -\infty} \cos{\left(\frac{1}{z} \right)} = 1$$
More at z→-oo
Rapid solution [src]
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
One‐sided limits [src]
        /1\
 lim cos|-|
z->0+   \z/
$$\lim_{z \to 0^+} \cos{\left(\frac{1}{z} \right)}$$
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
= -1.83036708622755e-76
        /1\
 lim cos|-|
z->0-   \z/
$$\lim_{z \to 0^-} \cos{\left(\frac{1}{z} \right)}$$
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
= -1.83036708622755e-76
= -1.83036708622755e-76
Numerical answer [src]
-1.83036708622755e-76
-1.83036708622755e-76
The graph
Limit of the function cos(1/z)