Mister Exam

Other calculators:


cos(1/x)/x

Limit of the function cos(1/x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   /1\\
     |cos|-||
     |   \x/|
 lim |------|
x->0+\  x   /
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(\frac{1}{x} \right)}}{x}\right)$$
Limit(cos(1/x)/x, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
One‐sided limits [src]
     /   /1\\
     |cos|-||
     |   \x/|
 lim |------|
x->0+\  x   /
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(\frac{1}{x} \right)}}{x}\right)$$
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
= -1.99142122683281e-74
     /   /1\\
     |cos|-||
     |   \x/|
 lim |------|
x->0-\  x   /
$$\lim_{x \to 0^-}\left(\frac{\cos{\left(\frac{1}{x} \right)}}{x}\right)$$
<-oo, oo>
$$\left\langle -\infty, \infty\right\rangle$$
= 1.99142122683281e-74
= 1.99142122683281e-74
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\cos{\left(\frac{1}{x} \right)}}{x}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(\frac{1}{x} \right)}}{x}\right) = \left\langle -\infty, \infty\right\rangle$$
$$\lim_{x \to \infty}\left(\frac{\cos{\left(\frac{1}{x} \right)}}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\cos{\left(\frac{1}{x} \right)}}{x}\right) = \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\cos{\left(\frac{1}{x} \right)}}{x}\right) = \cos{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\cos{\left(\frac{1}{x} \right)}}{x}\right) = 0$$
More at x→-oo
Numerical answer [src]
-1.99142122683281e-74
-1.99142122683281e-74
The graph
Limit of the function cos(1/x)/x