Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 2^(-x)*factorial(x)
Limit of n2*(5/2+n/2)
Limit of ((-4+3*x)/(2+3*x))^(2*x)
Limit of (2+n)^2*(1+2*n)/(n^2*(3+2*n))
Graphing y =
:
acot(x)/x
Identical expressions
acot(x)/x
arcco tangent of gent of (x) divide by x
acotx/x
acot(x) divide by x
Similar expressions
(x+2*acot(x))/x
(x-2*acot(x))/x
(x-acot(x))/x^2
arccot(x)/x
arccotx/x
Limit of the function
/
acot(x)/x
Limit of the function acot(x)/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/acot(x)\ lim |-------| x->oo\ x /
lim
x
→
∞
(
acot
(
x
)
x
)
\lim_{x \to \infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{x}\right)
x
→
∞
lim
(
x
acot
(
x
)
)
Limit(acot(x)/x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
20
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
acot
(
x
)
x
)
=
0
\lim_{x \to \infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{x}\right) = 0
x
→
∞
lim
(
x
acot
(
x
)
)
=
0
lim
x
→
0
−
(
acot
(
x
)
x
)
=
∞
\lim_{x \to 0^-}\left(\frac{\operatorname{acot}{\left(x \right)}}{x}\right) = \infty
x
→
0
−
lim
(
x
acot
(
x
)
)
=
∞
More at x→0 from the left
lim
x
→
0
+
(
acot
(
x
)
x
)
=
∞
\lim_{x \to 0^+}\left(\frac{\operatorname{acot}{\left(x \right)}}{x}\right) = \infty
x
→
0
+
lim
(
x
acot
(
x
)
)
=
∞
More at x→0 from the right
lim
x
→
1
−
(
acot
(
x
)
x
)
=
π
4
\lim_{x \to 1^-}\left(\frac{\operatorname{acot}{\left(x \right)}}{x}\right) = \frac{\pi}{4}
x
→
1
−
lim
(
x
acot
(
x
)
)
=
4
π
More at x→1 from the left
lim
x
→
1
+
(
acot
(
x
)
x
)
=
π
4
\lim_{x \to 1^+}\left(\frac{\operatorname{acot}{\left(x \right)}}{x}\right) = \frac{\pi}{4}
x
→
1
+
lim
(
x
acot
(
x
)
)
=
4
π
More at x→1 from the right
lim
x
→
−
∞
(
acot
(
x
)
x
)
=
0
\lim_{x \to -\infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{x}\right) = 0
x
→
−
∞
lim
(
x
acot
(
x
)
)
=
0
More at x→-oo
The graph