Mister Exam

Other calculators:


atan(1/x)

Limit of the function atan(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         /  1\
 lim atan|1*-|
x->0+    \  x/
$$\lim_{x \to 0^+} \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)}$$
Limit(atan(1/x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} = \frac{\pi}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} = \frac{\pi}{2}$$
$$\lim_{x \to \infty} \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} = 0$$
More at x→oo
$$\lim_{x \to 1^-} \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} = \frac{\pi}{4}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} = \frac{\pi}{4}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)} = 0$$
More at x→-oo
One‐sided limits [src]
         /  1\
 lim atan|1*-|
x->0+    \  x/
$$\lim_{x \to 0^+} \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)}$$
pi
--
2 
$$\frac{\pi}{2}$$
= 1.5707963267949
         /  1\
 lim atan|1*-|
x->0-    \  x/
$$\lim_{x \to 0^-} \operatorname{atan}{\left(1 \cdot \frac{1}{x} \right)}$$
-pi 
----
 2  
$$- \frac{\pi}{2}$$
= -1.5707963267949
= -1.5707963267949
Rapid solution [src]
pi
--
2 
$$\frac{\pi}{2}$$
Numerical answer [src]
1.5707963267949
1.5707963267949
The graph
Limit of the function atan(1/x)