Mister Exam

Other calculators:


cos(x)*tan(5*x)

Limit of the function cos(x)*tan(5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (cos(x)*tan(5*x))
   pi                  
x->--+                 
   2                   
$$\lim_{x \to \frac{\pi}{2}^+}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right)$$
Limit(cos(x)*tan(5*x), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1/5
$$\frac{1}{5}$$
One‐sided limits [src]
 lim  (cos(x)*tan(5*x))
   pi                  
x->--+                 
   2                   
$$\lim_{x \to \frac{\pi}{2}^+}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right)$$
1/5
$$\frac{1}{5}$$
= 0.2
 lim  (cos(x)*tan(5*x))
   pi                  
x->---                 
   2                   
$$\lim_{x \to \frac{\pi}{2}^-}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right)$$
1/5
$$\frac{1}{5}$$
= 0.2
= 0.2
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \frac{1}{5}$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \frac{1}{5}$$
$$\lim_{x \to \infty}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \cos{\left(1 \right)} \tan{\left(5 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \cos{\left(1 \right)} \tan{\left(5 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
Numerical answer [src]
0.2
0.2
The graph
Limit of the function cos(x)*tan(5*x)