$$\lim_{x \to \frac{\pi}{2}^-}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \frac{1}{5}$$
More at x→pi/2 from the left$$\lim_{x \to \frac{\pi}{2}^+}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \frac{1}{5}$$
$$\lim_{x \to \infty}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo$$\lim_{x \to 0^-}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \cos{\left(1 \right)} \tan{\left(5 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \cos{\left(1 \right)} \tan{\left(5 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\cos{\left(x \right)} \tan{\left(5 x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo