$$\lim_{x \to \infty} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)}$$
$$\lim_{x \to 0^-} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)} = \frac{\pi}{4}$$
More at x→0 from the left$$\lim_{x \to 0^+} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)} = \frac{\pi}{4}$$
More at x→0 from the right$$\lim_{x \to 1^-} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)} = 0$$
More at x→1 from the left$$\lim_{x \to 1^+} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)} = 0$$
More at x→1 from the right$$\lim_{x \to -\infty} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)}$$
More at x→-oo