Mister Exam

Other calculators:


atan(1/2+(-1)^x/2)

Limit of the function atan(1/2+(-1)^x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         /        x\
         |1   (-1) |
 lim atan|- + -----|
x->oo    \2     2  /
$$\lim_{x \to \infty} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)}$$
Limit(atan(1/2 + (-1)^x/2), x, oo, dir='-')
The graph
Rapid solution [src]
None
None
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)}$$
$$\lim_{x \to 0^-} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)} = \frac{\pi}{4}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)} = \frac{\pi}{4}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)} = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)} = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty} \operatorname{atan}{\left(\frac{\left(-1\right)^{x}}{2} + \frac{1}{2} \right)}$$
More at x→-oo
The graph
Limit of the function atan(1/2+(-1)^x/2)