Mister Exam

Other calculators:


atan(5*x)

Limit of the function atan(5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim atan(5*x)
x->0+         
limx0+atan(5x)\lim_{x \to 0^+} \operatorname{atan}{\left(5 x \right)}
Limit(atan(5*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Rapid solution [src]
0
00
One‐sided limits [src]
 lim atan(5*x)
x->0+         
limx0+atan(5x)\lim_{x \to 0^+} \operatorname{atan}{\left(5 x \right)}
0
00
= 6.62006561323233e-30
 lim atan(5*x)
x->0-         
limx0atan(5x)\lim_{x \to 0^-} \operatorname{atan}{\left(5 x \right)}
0
00
= -6.62006561323233e-30
= -6.62006561323233e-30
Other limits x→0, -oo, +oo, 1
limx0atan(5x)=0\lim_{x \to 0^-} \operatorname{atan}{\left(5 x \right)} = 0
More at x→0 from the left
limx0+atan(5x)=0\lim_{x \to 0^+} \operatorname{atan}{\left(5 x \right)} = 0
limxatan(5x)=π2\lim_{x \to \infty} \operatorname{atan}{\left(5 x \right)} = \frac{\pi}{2}
More at x→oo
limx1atan(5x)=atan(5)\lim_{x \to 1^-} \operatorname{atan}{\left(5 x \right)} = \operatorname{atan}{\left(5 \right)}
More at x→1 from the left
limx1+atan(5x)=atan(5)\lim_{x \to 1^+} \operatorname{atan}{\left(5 x \right)} = \operatorname{atan}{\left(5 \right)}
More at x→1 from the right
limxatan(5x)=π2\lim_{x \to -\infty} \operatorname{atan}{\left(5 x \right)} = - \frac{\pi}{2}
More at x→-oo
Numerical answer [src]
6.62006561323233e-30
6.62006561323233e-30
The graph
Limit of the function atan(5*x)