Mister Exam

Other calculators:


asin(3*x)

Limit of the function asin(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim asin(3*x)
x->0+         
$$\lim_{x \to 0^+} \operatorname{asin}{\left(3 x \right)}$$
Limit(asin(3*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim asin(3*x)
x->0+         
$$\lim_{x \to 0^+} \operatorname{asin}{\left(3 x \right)}$$
0
$$0$$
= 1.54267762376377e-32
 lim asin(3*x)
x->0-         
$$\lim_{x \to 0^-} \operatorname{asin}{\left(3 x \right)}$$
0
$$0$$
= -1.54267762376377e-32
= -1.54267762376377e-32
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \operatorname{asin}{\left(3 x \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \operatorname{asin}{\left(3 x \right)} = 0$$
$$\lim_{x \to \infty} \operatorname{asin}{\left(3 x \right)} = - \infty i$$
More at x→oo
$$\lim_{x \to 1^-} \operatorname{asin}{\left(3 x \right)} = \operatorname{asin}{\left(3 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \operatorname{asin}{\left(3 x \right)} = \operatorname{asin}{\left(3 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \operatorname{asin}{\left(3 x \right)} = \infty i$$
More at x→-oo
Numerical answer [src]
1.54267762376377e-32
1.54267762376377e-32
The graph
Limit of the function asin(3*x)