Mister Exam

Other calculators:


asin(5*x)

Limit of the function asin(5*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim asin(5*x)
x->oo         
$$\lim_{x \to \infty} \operatorname{asin}{\left(5 x \right)}$$
Limit(asin(5*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo*I
$$- \infty i$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \operatorname{asin}{\left(5 x \right)} = - \infty i$$
$$\lim_{x \to 0^-} \operatorname{asin}{\left(5 x \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \operatorname{asin}{\left(5 x \right)} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \operatorname{asin}{\left(5 x \right)} = \operatorname{asin}{\left(5 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \operatorname{asin}{\left(5 x \right)} = \operatorname{asin}{\left(5 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \operatorname{asin}{\left(5 x \right)} = \infty i$$
More at x→-oo
The graph
Limit of the function asin(5*x)