Mister Exam

Other calculators


0.005*cos((2*3.14*t)/0.0325)
  • How to use it?

  • Integral of d{x}:
  • Integral of sin^3(x)/cos^2(x) Integral of sin^3(x)/cos^2(x)
  • Integral of ln(x^2+x+1) Integral of ln(x^2+x+1)
  • Integral of ln(x^2-x+2) Integral of ln(x^2-x+2)
  • Integral of ln(x^(1/2)) Integral of ln(x^(1/2))
  • Identical expressions

  • zero . five *cos((two * three . fourteen *t)/ zero . three hundred and twenty-five)
  • 0.005 multiply by co sinus of e of ((2 multiply by 3.14 multiply by t) divide by 0.0325)
  • zero . five multiply by co sinus of e of ((two multiply by three . fourteen multiply by t) divide by zero . three hundred and twenty minus five)
  • 0.005cos((23.14t)/0.0325)
  • 0.005cos23.14t/0.0325
  • 0.005*cos((2*3.14*t) divide by 0.0325)

Integral of 0.005*cos((2*3.14*t)/0.0325) dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 1/500                      
   /                        
  |                         
  |      /  157     1   \   
  |   cos|2*---*t*------|   
  |      \   50   0.0325/   
  |   ------------------- dt
  |           200           
  |                         
 /                          
 0                          
$$\int\limits_{0}^{\frac{1}{500}} \frac{\cos{\left(2 \cdot \frac{157}{50} t \frac{1}{0.0325} \right)}}{200}\, dt$$
Integral(cos(2*(157/50)*t/0.0325)/200, (t, 0, 1/500))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                    
 |                                                                     
 |    /  157     1   \                                                 
 | cos|2*---*t*------|                                                 
 |    \   50   0.0325/                                 /  157     1   \
 | ------------------- dt = C + 2.58757961783439e-5*sin|2*---*t*------|
 |         200                                         \   50   0.0325/
 |                                                                     
/                                                                      
$$\int \frac{\cos{\left(2 \cdot \frac{157}{50} t \frac{1}{0.0325} \right)}}{200}\, dt = C + 2.58757961783439 \cdot 10^{-5} \sin{\left(2 \cdot \frac{157}{50} t \frac{1}{0.0325} \right)}$$
The graph
The answer [src]
9.75293138371004e-6
$$9.75293138371004 \cdot 10^{-6}$$
=
=
9.75293138371004e-6
$$9.75293138371004 \cdot 10^{-6}$$
Numerical answer [src]
9.75293138371004e-6
9.75293138371004e-6
The graph
Integral of 0.005*cos((2*3.14*t)/0.0325) dt

    Use the examples entering the upper and lower limits of integration.