1/500 / | | / 157 1 \ | cos|2*---*t*------| | \ 50 0.0325/ | ------------------- dt | 200 | / 0
Integral(cos(2*(157/50)*t/0.0325)/200, (t, 0, 1/500))
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | / 157 1 \ | cos|2*---*t*------| | \ 50 0.0325/ / 157 1 \ | ------------------- dt = C + 2.58757961783439e-5*sin|2*---*t*------| | 200 \ 50 0.0325/ | /
9.75293138371004e-6
=
9.75293138371004e-6
Use the examples entering the upper and lower limits of integration.