Mister Exam

Other calculators


ln(x^2-x+2)

Integral of ln(x^2-x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     / 2        \   
 |  log\x  - x + 2/ dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \log{\left(\left(x^{2} - x\right) + 2 \right)}\, dx$$
Integral(log(x^2 - x + 2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                                   
 |                                   /     2    \                                 /    ___           \
 |    / 2        \                log\2 + x  - x/        / 2        \     ___     |2*\/ 7 *(-1/2 + x)|
 | log\x  - x + 2/ dx = C - 2*x - --------------- + x*log\x  - x + 2/ + \/ 7 *atan|------------------|
 |                                       2                                        \        7         /
/                                                                                                     
$$\int \log{\left(\left(x^{2} - x\right) + 2 \right)}\, dx = C + x \log{\left(\left(x^{2} - x\right) + 2 \right)} - 2 x - \frac{\log{\left(x^{2} - x + 2 \right)}}{2} + \sqrt{7} \operatorname{atan}{\left(\frac{2 \sqrt{7} \left(x - \frac{1}{2}\right)}{7} \right)}$$
The graph
The answer [src]
                 /  ___\         
         ___     |\/ 7 |         
-2 + 2*\/ 7 *atan|-----| + log(2)
                 \  7  /         
$$-2 + \log{\left(2 \right)} + 2 \sqrt{7} \operatorname{atan}{\left(\frac{\sqrt{7}}{7} \right)}$$
=
=
                 /  ___\         
         ___     |\/ 7 |         
-2 + 2*\/ 7 *atan|-----| + log(2)
                 \  7  /         
$$-2 + \log{\left(2 \right)} + 2 \sqrt{7} \operatorname{atan}{\left(\frac{\sqrt{7}}{7} \right)}$$
-2 + 2*sqrt(7)*atan(sqrt(7)/7) + log(2)
Numerical answer [src]
0.60532226426357
0.60532226426357
The graph
Integral of ln(x^2-x+2) dx

    Use the examples entering the upper and lower limits of integration.