3/2
x
/
|
| / 2 \
| \y - x*y/ dy
|
/
___
-3*x + 10*\/ x
Integral(y^2 - x*y, (y, -3*x + 10*sqrt(x), x^(3/2)))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of is when :
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3 2 | / 2 \ y x*y | \y - x*y/ dy = C + -- - ---- | 3 2 /
3 2 4 / ___\ 9/2 / ___\ x \-3*x + 10*\/ x / x x*\-3*x + 10*\/ x / - -- - ------------------ + ---- + -------------------- 2 3 3 2
=
3 2 4 / ___\ 9/2 / ___\ x \-3*x + 10*\/ x / x x*\-3*x + 10*\/ x / - -- - ------------------ + ---- + -------------------- 2 3 3 2
-x^4/2 - (-3*x + 10*sqrt(x))^3/3 + x^(9/2)/3 + x*(-3*x + 10*sqrt(x))^2/2
Use the examples entering the upper and lower limits of integration.