Integral of y^2/x^2 dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫x2y2dx=y2∫x21dx
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)
So, the result is: NaN
-
Add the constant of integration:
NaN+constant
The answer is:
NaN+constant
The answer (Indefinite)
[src]
/
|
| 2
| y
| -- dx = nan
| 2
| x
|
/
∫x2y2dx=NaN
−y2+∞sign(y2)
=
−y2+∞sign(y2)
Use the examples entering the upper and lower limits of integration.