Mister Exam

Other calculators

Integral of y^2/x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1      
  /      
 |       
 |   2   
 |  y    
 |  -- dx
 |   2   
 |  x    
 |       
/        
0        
$$\int\limits_{0}^{1} \frac{y^{2}}{x^{2}}\, dx$$
Integral(y^2/x^2, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

      PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArccothRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False), (ArctanhRule(a=1, b=1, c=0, context=1/(x**2), symbol=x), False)], context=1/(x**2), symbol=x)

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /           
 |            
 |  2         
 | y          
 | -- dx = nan
 |  2         
 | x          
 |            
/             
$$\int \frac{y^{2}}{x^{2}}\, dx = \text{NaN}$$
The answer [src]
       / 2\    2
oo*sign\y / - y 
$$- y^{2} + \infty \operatorname{sign}{\left(y^{2} \right)}$$
=
=
       / 2\    2
oo*sign\y / - y 
$$- y^{2} + \infty \operatorname{sign}{\left(y^{2} \right)}$$
oo*sign(y^2) - y^2

    Use the examples entering the upper and lower limits of integration.