Integral of y+x dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=2x2
-
The integral of a constant is the constant times the variable of integration:
∫ydx=xy
The result is: 2x2+xy
-
Now simplify:
2x(x+2y)
-
Add the constant of integration:
2x(x+2y)+constant
The answer is:
2x(x+2y)+constant
The answer (Indefinite)
[src]
/ 2
| x
| (y + x) dx = C + -- + x*y
| 2
/
∫(x+y)dx=C+2x2+xy
____
-8 - 2*x + 4*y - 2*y*\/ -x
−2x−2y−x+4y−8
=
____
-8 - 2*x + 4*y - 2*y*\/ -x
−2x−2y−x+4y−8
-8 - 2*x + 4*y - 2*y*sqrt(-x)
Use the examples entering the upper and lower limits of integration.