Mister Exam

Integral of y+x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      ____          
 -2*\/ -x           
     /              
    |               
    |     (y + x) dx
    |               
   /                
   -4               
$$\int\limits_{-4}^{- 2 \sqrt{- x}} \left(x + y\right)\, dx$$
Integral(y + x, (x, -4, -2*sqrt(-x)))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                  2      
 |                  x       
 | (y + x) dx = C + -- + x*y
 |                  2       
/                           
$$\int \left(x + y\right)\, dx = C + \frac{x^{2}}{2} + x y$$
The answer [src]
                       ____
-8 - 2*x + 4*y - 2*y*\/ -x 
$$- 2 x - 2 y \sqrt{- x} + 4 y - 8$$
=
=
                       ____
-8 - 2*x + 4*y - 2*y*\/ -x 
$$- 2 x - 2 y \sqrt{- x} + 4 y - 8$$
-8 - 2*x + 4*y - 2*y*sqrt(-x)

    Use the examples entering the upper and lower limits of integration.