Mister Exam

Other calculators

Integral of (y-1)^2 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5            
  /            
 |             
 |         2   
 |  (y - 1)  dy
 |             
/              
2              
25(y1)2dy\int\limits_{2}^{5} \left(y - 1\right)^{2}\, dy
Integral((y - 1)^2, (y, 2, 5))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=y1u = y - 1.

      Then let du=dydu = dy and substitute dudu:

      u2du\int u^{2}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

      Now substitute uu back in:

      (y1)33\frac{\left(y - 1\right)^{3}}{3}

    Method #2

    1. Rewrite the integrand:

      (y1)2=y22y+1\left(y - 1\right)^{2} = y^{2} - 2 y + 1

    2. Integrate term-by-term:

      1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

        y2dy=y33\int y^{2}\, dy = \frac{y^{3}}{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2y)dy=2ydy\int \left(- 2 y\right)\, dy = - 2 \int y\, dy

        1. The integral of yny^{n} is yn+1n+1\frac{y^{n + 1}}{n + 1} when n1n \neq -1:

          ydy=y22\int y\, dy = \frac{y^{2}}{2}

        So, the result is: y2- y^{2}

      1. The integral of a constant is the constant times the variable of integration:

        1dy=y\int 1\, dy = y

      The result is: y33y2+y\frac{y^{3}}{3} - y^{2} + y

  2. Now simplify:

    (y1)33\frac{\left(y - 1\right)^{3}}{3}

  3. Add the constant of integration:

    (y1)33+constant\frac{\left(y - 1\right)^{3}}{3}+ \mathrm{constant}


The answer is:

(y1)33+constant\frac{\left(y - 1\right)^{3}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                          3
 |        2          (y - 1) 
 | (y - 1)  dy = C + --------
 |                      3    
/                            
(y1)2dy=C+(y1)33\int \left(y - 1\right)^{2}\, dy = C + \frac{\left(y - 1\right)^{3}}{3}
The graph
2.005.002.252.502.753.003.253.503.754.004.254.504.75025
The answer [src]
21
2121
=
=
21
2121
21
Numerical answer [src]
21.0
21.0

    Use the examples entering the upper and lower limits of integration.