Mister Exam

Other calculators


y=√1-x^2

Integral of y=√1-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  /  ___    2\   
 |  \\/ 1  - x / dx
 |                 
/                  
0                  
01(x2+1)dx\int\limits_{0}^{1} \left(- x^{2} + \sqrt{1}\right)\, dx
Integral(sqrt(1) - x^2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x2)dx=x2dx\int \left(- x^{2}\right)\, dx = - \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x33- \frac{x^{3}}{3}

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int \sqrt{1}\, dx = x

    The result is: x33+x- \frac{x^{3}}{3} + x

  2. Add the constant of integration:

    x33+x+constant- \frac{x^{3}}{3} + x+ \mathrm{constant}


The answer is:

x33+x+constant- \frac{x^{3}}{3} + x+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                            3
 | /  ___    2\              x 
 | \\/ 1  - x / dx = C + x - --
 |                           3 
/                              
(x2+1)dx=Cx33+x\int \left(- x^{2} + \sqrt{1}\right)\, dx = C - \frac{x^{3}}{3} + x
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
2/3
23\frac{2}{3}
=
=
2/3
23\frac{2}{3}
2/3
Numerical answer [src]
0.666666666666667
0.666666666666667
The graph
Integral of y=√1-x^2 dx

    Use the examples entering the upper and lower limits of integration.