Mister Exam

Other calculators

Integral of xysin2y+xsiny^2-4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                  
  /                                  
 |                                   
 |  /                    2       \   
 |  \x*y*sin(2*y) + x*sin (y) - 4/ dx
 |                                   
/                                    
0                                    
$$\int\limits_{0}^{1} \left(x y \sin{\left(2 y \right)} + x \sin^{2}{\left(y \right)} - 4\right)\, dx$$
Integral(x*y*sin(2*y) + x*sin(y)^2 - 1*4, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                        
 |                                                2    2         2         
 | /                    2       \                x *sin (y)   y*x *sin(2*y)
 | \x*y*sin(2*y) + x*sin (y) - 4/ dx = C - 4*x + ---------- + -------------
 |                                                   2              2      
/                                                                          
$$\int \left(x y \sin{\left(2 y \right)} + x \sin^{2}{\left(y \right)} - 4\right)\, dx = C + \frac{x^{2} y \sin{\left(2 y \right)}}{2} + \frac{x^{2} \sin^{2}{\left(y \right)}}{2} - 4 x$$
The answer [src]
        2                
     sin (y)   y*sin(2*y)
-4 + ------- + ----------
        2          2     
$$\frac{y \sin{\left(2 y \right)}}{2} + \frac{\sin^{2}{\left(y \right)}}{2} - 4$$
=
=
        2                
     sin (y)   y*sin(2*y)
-4 + ------- + ----------
        2          2     
$$\frac{y \sin{\left(2 y \right)}}{2} + \frac{\sin^{2}{\left(y \right)}}{2} - 4$$

    Use the examples entering the upper and lower limits of integration.