Mister Exam

Integral of xsecxtanx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  x*sec(x)*tan(x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} x \sec{\left(x \right)} \tan{\left(x \right)}\, dx$$
Integral((x*sec(x))*tan(x), (x, 0, 1))
The answer (Indefinite) [src]
  /                           /                  
 |                           |                   
 | x*sec(x)*tan(x) dx = C +  | x*sec(x)*tan(x) dx
 |                           |                   
/                           /                    
$$\int x \sec{\left(x \right)} \tan{\left(x \right)}\, dx = C + \int x \tan{\left(x \right)} \sec{\left(x \right)}\, dx$$
The answer [src]
  1                   
  /                   
 |                    
 |  x*sec(x)*tan(x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} x \tan{\left(x \right)} \sec{\left(x \right)}\, dx$$
=
=
  1                   
  /                   
 |                    
 |  x*sec(x)*tan(x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} x \tan{\left(x \right)} \sec{\left(x \right)}\, dx$$
Integral(x*sec(x)*tan(x), (x, 0, 1))
Numerical answer [src]
0.624624546797409
0.624624546797409

    Use the examples entering the upper and lower limits of integration.