Mister Exam

Integral of xsec(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  x*sec(x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} x \sec{\left(x \right)}\, dx$$
Integral(x*sec(x), (x, 0, 1))
The answer [src]
  1            
  /            
 |             
 |  x*sec(x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} x \sec{\left(x \right)}\, dx$$
=
=
  1            
  /            
 |             
 |  x*sec(x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} x \sec{\left(x \right)}\, dx$$
Integral(x*sec(x), (x, 0, 1))
Numerical answer [src]
0.67553497368647
0.67553497368647

    Use the examples entering the upper and lower limits of integration.