Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of e^(3*x) Integral of e^(3*x)
  • Integral of y^(-2) Integral of y^(-2)
  • Integral of 1/y
  • Integral of secx Integral of secx
  • Identical expressions

  • xlnx/((sqrt(x^ two - one)^ three))
  • xlnx divide by (( square root of (x squared minus 1) cubed ))
  • xlnx divide by (( square root of (x to the power of two minus one) to the power of three))
  • xlnx/((√(x^2-1)^3))
  • xlnx/((sqrt(x2-1)3))
  • xlnx/sqrtx2-13
  • xlnx/((sqrt(x²-1)³))
  • xlnx/((sqrt(x to the power of 2-1) to the power of 3))
  • xlnx/sqrtx^2-1^3
  • xlnx divide by ((sqrt(x^2-1)^3))
  • xlnx/((sqrt(x^2-1)^3))dx
  • Similar expressions

  • xlnx/((sqrt(x^2+1)^3))

Integral of xlnx/((sqrt(x^2-1)^3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |    x*log(x)     
 |  ------------ dx
 |             3   
 |     ________    
 |    /  2         
 |  \/  x  - 1     
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{x \log{\left(x \right)}}{\left(\sqrt{x^{2} - 1}\right)^{3}}\, dx$$
Integral(x*log(x)/((sqrt(x^2 - 1*1))^3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

        TrigSubstitutionRule(theta=_theta, func=sec(_theta), rewritten=1, substep=ConstantRule(constant=1, context=1, symbol=_theta), restriction=(x > -1) & (x < 1), context=1/(x*sqrt(x**2 - 1)), symbol=x)

      So, the result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

        TrigSubstitutionRule(theta=_theta, func=sec(_theta), rewritten=1, substep=ConstantRule(constant=1, context=1, symbol=_theta), restriction=(x > -1) & (x < 1), context=1/(x*sqrt(x**2 - 1)), symbol=x)

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

        TrigSubstitutionRule(theta=_theta, func=sec(_theta), rewritten=1, substep=ConstantRule(constant=1, context=1, symbol=_theta), restriction=(x > -1) & (x < 1), context=1/(x*sqrt(x**2 - 1)), symbol=x)

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                       
 |                                                                        
 |   x*log(x)               log(x)      //    /1\                        \
 | ------------ dx = C - ------------ + | -1, x < 1)|
 |            3             _________   \\    \x/                        /
 |    ________             /       2                                      
 |   /  2                \/  -1 + x                                       
 | \/  x  - 1                                                             
 |                                                                        
/                                                                         
$$-\arcsin \left({{1}\over{\left| x\right| }}\right)-{{\log x}\over{ \sqrt{x^2-1}}}$$
The answer [src]
-I*log(2)
$$-{{\pi}\over{2}}$$
=
=
-I*log(2)
$$- i \log{\left(2 \right)}$$
Numerical answer [src]
(0.0 - 0.693147180323136j)
(0.0 - 0.693147180323136j)

    Use the examples entering the upper and lower limits of integration.