Mister Exam

Integral of xe^xsinxdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     x          
 |  x*E *sin(x) dx
 |                
/                 
0                 
01exxsin(x)dx\int\limits_{0}^{1} e^{x} x \sin{\left(x \right)}\, dx
Integral((x*E^x)*sin(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=exsin(x)\operatorname{dv}{\left(x \right)} = e^{x} \sin{\left(x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. Use integration by parts, noting that the integrand eventually repeats itself.

      1. For the integrand exsin(x)e^{x} \sin{\left(x \right)}:

        Let u(x)=sin(x)u{\left(x \right)} = \sin{\left(x \right)} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

        Then exsin(x)dx=exsin(x)excos(x)dx\int e^{x} \sin{\left(x \right)}\, dx = e^{x} \sin{\left(x \right)} - \int e^{x} \cos{\left(x \right)}\, dx.

      2. For the integrand excos(x)e^{x} \cos{\left(x \right)}:

        Let u(x)=cos(x)u{\left(x \right)} = \cos{\left(x \right)} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

        Then exsin(x)dx=exsin(x)excos(x)+(exsin(x))dx\int e^{x} \sin{\left(x \right)}\, dx = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + \int \left(- e^{x} \sin{\left(x \right)}\right)\, dx.

      3. Notice that the integrand has repeated itself, so move it to one side:

        2exsin(x)dx=exsin(x)excos(x)2 \int e^{x} \sin{\left(x \right)}\, dx = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)}

        Therefore,

        exsin(x)dx=exsin(x)2excos(x)2\int e^{x} \sin{\left(x \right)}\, dx = \frac{e^{x} \sin{\left(x \right)}}{2} - \frac{e^{x} \cos{\left(x \right)}}{2}

    Now evaluate the sub-integral.

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      exsin(x)2dx=exsin(x)dx2\int \frac{e^{x} \sin{\left(x \right)}}{2}\, dx = \frac{\int e^{x} \sin{\left(x \right)}\, dx}{2}

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand exsin(x)e^{x} \sin{\left(x \right)}:

          Let u(x)=sin(x)u{\left(x \right)} = \sin{\left(x \right)} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

          Then exsin(x)dx=exsin(x)excos(x)dx\int e^{x} \sin{\left(x \right)}\, dx = e^{x} \sin{\left(x \right)} - \int e^{x} \cos{\left(x \right)}\, dx.

        2. For the integrand excos(x)e^{x} \cos{\left(x \right)}:

          Let u(x)=cos(x)u{\left(x \right)} = \cos{\left(x \right)} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

          Then exsin(x)dx=exsin(x)excos(x)+(exsin(x))dx\int e^{x} \sin{\left(x \right)}\, dx = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)} + \int \left(- e^{x} \sin{\left(x \right)}\right)\, dx.

        3. Notice that the integrand has repeated itself, so move it to one side:

          2exsin(x)dx=exsin(x)excos(x)2 \int e^{x} \sin{\left(x \right)}\, dx = e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)}

          Therefore,

          exsin(x)dx=exsin(x)2excos(x)2\int e^{x} \sin{\left(x \right)}\, dx = \frac{e^{x} \sin{\left(x \right)}}{2} - \frac{e^{x} \cos{\left(x \right)}}{2}

      So, the result is: exsin(x)4excos(x)4\frac{e^{x} \sin{\left(x \right)}}{4} - \frac{e^{x} \cos{\left(x \right)}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (excos(x)2)dx=excos(x)dx2\int \left(- \frac{e^{x} \cos{\left(x \right)}}{2}\right)\, dx = - \frac{\int e^{x} \cos{\left(x \right)}\, dx}{2}

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand excos(x)e^{x} \cos{\left(x \right)}:

          Let u(x)=cos(x)u{\left(x \right)} = \cos{\left(x \right)} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

          Then excos(x)dx=excos(x)(exsin(x))dx\int e^{x} \cos{\left(x \right)}\, dx = e^{x} \cos{\left(x \right)} - \int \left(- e^{x} \sin{\left(x \right)}\right)\, dx.

        2. For the integrand exsin(x)- e^{x} \sin{\left(x \right)}:

          Let u(x)=sin(x)u{\left(x \right)} = - \sin{\left(x \right)} and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

          Then excos(x)dx=exsin(x)+excos(x)+(excos(x))dx\int e^{x} \cos{\left(x \right)}\, dx = e^{x} \sin{\left(x \right)} + e^{x} \cos{\left(x \right)} + \int \left(- e^{x} \cos{\left(x \right)}\right)\, dx.

        3. Notice that the integrand has repeated itself, so move it to one side:

          2excos(x)dx=exsin(x)+excos(x)2 \int e^{x} \cos{\left(x \right)}\, dx = e^{x} \sin{\left(x \right)} + e^{x} \cos{\left(x \right)}

          Therefore,

          excos(x)dx=exsin(x)2+excos(x)2\int e^{x} \cos{\left(x \right)}\, dx = \frac{e^{x} \sin{\left(x \right)}}{2} + \frac{e^{x} \cos{\left(x \right)}}{2}

      So, the result is: exsin(x)4excos(x)4- \frac{e^{x} \sin{\left(x \right)}}{4} - \frac{e^{x} \cos{\left(x \right)}}{4}

    The result is: excos(x)2- \frac{e^{x} \cos{\left(x \right)}}{2}

  3. Now simplify:

    (2xcos(x+π4)+cos(x))ex2\frac{\left(- \sqrt{2} x \cos{\left(x + \frac{\pi}{4} \right)} + \cos{\left(x \right)}\right) e^{x}}{2}

  4. Add the constant of integration:

    (2xcos(x+π4)+cos(x))ex2+constant\frac{\left(- \sqrt{2} x \cos{\left(x + \frac{\pi}{4} \right)} + \cos{\left(x \right)}\right) e^{x}}{2}+ \mathrm{constant}


The answer is:

(2xcos(x+π4)+cos(x))ex2+constant\frac{\left(- \sqrt{2} x \cos{\left(x + \frac{\pi}{4} \right)} + \cos{\left(x \right)}\right) e^{x}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                          
 |                        / x                  x\           x
 |    x                   |e *sin(x)   cos(x)*e |   cos(x)*e 
 | x*E *sin(x) dx = C + x*|--------- - ---------| + ---------
 |                        \    2           2    /       2    
/                                                            
exxsin(x)dx=C+x(exsin(x)2excos(x)2)+excos(x)2\int e^{x} x \sin{\left(x \right)}\, dx = C + x \left(\frac{e^{x} \sin{\left(x \right)}}{2} - \frac{e^{x} \cos{\left(x \right)}}{2}\right) + \frac{e^{x} \cos{\left(x \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.02.5
The answer [src]
  1   E*sin(1)
- - + --------
  2      2    
12+esin(1)2- \frac{1}{2} + \frac{e \sin{\left(1 \right)}}{2}
=
=
  1   E*sin(1)
- - + --------
  2      2    
12+esin(1)2- \frac{1}{2} + \frac{e \sin{\left(1 \right)}}{2}
-1/2 + E*sin(1)/2
Numerical answer [src]
0.643677643589421
0.643677643589421
The graph
Integral of xe^xsinxdx dx

    Use the examples entering the upper and lower limits of integration.