Mister Exam

Other calculators


xe^xcos(8x)

Integral of xe^xcos(8x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     x            
 |  x*E *cos(8*x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} e^{x} x \cos{\left(8 x \right)}\, dx$$
Integral((x*E^x)*cos(8*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Use integration by parts, noting that the integrand eventually repeats itself.

      1. For the integrand :

        Let and let .

        Then .

      2. For the integrand :

        Let and let .

        Then .

      3. Notice that the integrand has repeated itself, so move it to one side:

        Therefore,

    Now evaluate the sub-integral.

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand :

          Let and let .

          Then .

        2. For the integrand :

          Let and let .

          Then .

        3. Notice that the integrand has repeated itself, so move it to one side:

          Therefore,

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand :

          Let and let .

          Then .

        2. For the integrand :

          Let and let .

          Then .

        3. Notice that the integrand has repeated itself, so move it to one side:

          Therefore,

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                        
 |                          /          x      x         \       x                         x
 |    x                     |cos(8*x)*e    8*e *sin(8*x)|   16*e *sin(8*x)   63*cos(8*x)*e 
 | x*E *cos(8*x) dx = C + x*|----------- + -------------| - -------------- + --------------
 |                          \     65             65     /        4225             4225     
/                                                                                          
$$\int e^{x} x \cos{\left(8 x \right)}\, dx = C + x \left(\frac{8 e^{x} \sin{\left(8 x \right)}}{65} + \frac{e^{x} \cos{\left(8 x \right)}}{65}\right) - \frac{16 e^{x} \sin{\left(8 x \right)}}{4225} + \frac{63 e^{x} \cos{\left(8 x \right)}}{4225}$$
The graph
The answer [src]
   63    128*E*cos(8)   504*E*sin(8)
- ---- + ------------ + ------------
  4225       4225           4225    
$$- \frac{63}{4225} + \frac{128 e \cos{\left(8 \right)}}{4225} + \frac{504 e \sin{\left(8 \right)}}{4225}$$
=
=
   63    128*E*cos(8)   504*E*sin(8)
- ---- + ------------ + ------------
  4225       4225           4225    
$$- \frac{63}{4225} + \frac{128 e \cos{\left(8 \right)}}{4225} + \frac{504 e \sin{\left(8 \right)}}{4225}$$
-63/4225 + 128*E*cos(8)/4225 + 504*E*sin(8)/4225
Numerical answer [src]
0.293919384012818
0.293919384012818
The graph
Integral of xe^xcos(8x) dx

    Use the examples entering the upper and lower limits of integration.