Mister Exam

Other calculators


xe^(1/x)

Integral of xe^(1/x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |    x ___   
 |  x*\/ E  dx
 |            
/             
0             
01e1xxdx\int\limits_{0}^{1} e^{\frac{1}{x}} x\, dx
Integral(x*E^(1/x), (x, 0, 1))
Detail solution
  1. Let u=1xu = \frac{1}{x}.

    Then let du=dxx2du = - \frac{dx}{x^{2}} and substitute du- du:

    (euu3)du\int \left(- \frac{e^{u}}{u^{3}}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      euu3du=euu3du\int \frac{e^{u}}{u^{3}}\, du = - \int \frac{e^{u}}{u^{3}}\, du

        UpperGammaRule(a=1, e=-3, context=exp(_u)/_u**3, symbol=_u)

      So, the result is: E3(u)u2\frac{\operatorname{E}_{3}\left(- u\right)}{u^{2}}

    Now substitute uu back in:

    x2E3(1x)x^{2} \operatorname{E}_{3}\left(- \frac{1}{x}\right)

  2. Add the constant of integration:

    x2E3(1x)+constantx^{2} \operatorname{E}_{3}\left(- \frac{1}{x}\right)+ \mathrm{constant}


The answer is:

x2E3(1x)+constantx^{2} \operatorname{E}_{3}\left(- \frac{1}{x}\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                   
 |   x ___           2       /   -1 \
 | x*\/ E  dx = C + x *expint|3, ---|
 |                           \    x /
/                                    
e1xxdx=C+x2E3(1x)\int e^{\frac{1}{x}} x\, dx = C + x^{2} \operatorname{E}_{3}\left(- \frac{1}{x}\right)
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1e2855e284
The answer [src]
     Ei(1)
oo - -----
       2  
Ei(1)2+- \frac{\operatorname{Ei}{\left(1 \right)}}{2} + \infty
=
=
     Ei(1)
oo - -----
       2  
Ei(1)2+- \frac{\operatorname{Ei}{\left(1 \right)}}{2} + \infty
oo - Ei(1)/2
Numerical answer [src]
3.92310711940104e+4333645441173067294
3.92310711940104e+4333645441173067294
The graph
Integral of xe^(1/x) dx

    Use the examples entering the upper and lower limits of integration.