Integral of xe^(1/x) dx
The solution
Detail solution
-
Let u=x1.
Then let du=−x2dx and substitute −du:
∫(−u3eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u3eudu=−∫u3eudu
UpperGammaRule(a=1, e=-3, context=exp(_u)/_u**3, symbol=_u)
So, the result is: u2E3(−u)
Now substitute u back in:
x2E3(−x1)
-
Add the constant of integration:
x2E3(−x1)+constant
The answer is:
x2E3(−x1)+constant
The answer (Indefinite)
[src]
/
|
| x ___ 2 / -1 \
| x*\/ E dx = C + x *expint|3, ---|
| \ x /
/
∫ex1xdx=C+x2E3(−x1)
The graph
−2Ei(1)+∞
=
−2Ei(1)+∞
3.92310711940104e+4333645441173067294
3.92310711940104e+4333645441173067294
Use the examples entering the upper and lower limits of integration.