Mister Exam

Integral of xe^(3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     3*x   
 |  x*E    dx
 |           
/            
0            
$$\int\limits_{0}^{1} e^{3 x} x\, dx$$
Integral(x*E^(3*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                               
 |                             3*x
 |    3*x          (-1 + 3*x)*e   
 | x*E    dx = C + ---------------
 |                        9       
/                                 
$$\int e^{3 x} x\, dx = C + \frac{\left(3 x - 1\right) e^{3 x}}{9}$$
The graph
The answer [src]
       3
1   2*e 
- + ----
9    9  
$$\frac{1}{9} + \frac{2 e^{3}}{9}$$
=
=
       3
1   2*e 
- + ----
9    9  
$$\frac{1}{9} + \frac{2 e^{3}}{9}$$
1/9 + 2*exp(3)/9
Numerical answer [src]
4.57456376070837
4.57456376070837
The graph
Integral of xe^(3x) dx

    Use the examples entering the upper and lower limits of integration.