Integral of 9*x*e^(3*x) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫9xe3xdx=9∫xe3xdx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=e3x.
Then du(x)=1.
To find v(x):
-
There are multiple ways to do this integral.
Method #1
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3x
Method #2
-
Let u=e3x.
Then let du=3e3xdx and substitute 3du:
∫91du
-
The integral of a constant times a function is the constant times the integral of the function:
∫31du=3∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 3u
Now substitute u back in:
3e3x
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫3e3xdx=3∫e3xdx
-
Let u=3x.
Then let du=3dx and substitute 3du:
∫9eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3eudu=3∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 3eu
Now substitute u back in:
3e3x
So, the result is: 9e3x
So, the result is: 3xe3x−e3x
-
Now simplify:
(3x−1)e3x
-
Add the constant of integration:
(3x−1)e3x+constant
The answer is:
(3x−1)e3x+constant
The answer (Indefinite)
[src]
/
|
| 3*x 3*x 3*x
| 9*x*e dx = C - e + 3*x*e
|
/
(3x−1)e3x
The graph
9(92e3+91)
=
Use the examples entering the upper and lower limits of integration.