Mister Exam

Other calculators


9*x*e^(3*x)

Integral of 9*x*e^(3*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |       3*x   
 |  9*x*e    dx
 |             
/              
0              
019xe3xdx\int\limits_{0}^{1} 9 x e^{3 x}\, dx
Integral(9*x*E^(3*x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    9xe3xdx=9xe3xdx\int 9 x e^{3 x}\, dx = 9 \int x e^{3 x}\, dx

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=xu{\left(x \right)} = x and let dv(x)=e3x\operatorname{dv}{\left(x \right)} = e^{3 x}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

      To find v(x)v{\left(x \right)}:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let u=3xu = 3 x.

          Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

          eu9du\int \frac{e^{u}}{9}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu3\frac{e^{u}}{3}

          Now substitute uu back in:

          e3x3\frac{e^{3 x}}{3}

        Method #2

        1. Let u=e3xu = e^{3 x}.

          Then let du=3e3xdxdu = 3 e^{3 x} dx and substitute du3\frac{du}{3}:

          19du\int \frac{1}{9}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            13du=1du3\int \frac{1}{3}\, du = \frac{\int 1\, du}{3}

            1. The integral of a constant is the constant times the variable of integration:

              1du=u\int 1\, du = u

            So, the result is: u3\frac{u}{3}

          Now substitute uu back in:

          e3x3\frac{e^{3 x}}{3}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      e3x3dx=e3xdx3\int \frac{e^{3 x}}{3}\, dx = \frac{\int e^{3 x}\, dx}{3}

      1. Let u=3xu = 3 x.

        Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

        eu9du\int \frac{e^{u}}{9}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          eu3du=eudu3\int \frac{e^{u}}{3}\, du = \frac{\int e^{u}\, du}{3}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu3\frac{e^{u}}{3}

        Now substitute uu back in:

        e3x3\frac{e^{3 x}}{3}

      So, the result is: e3x9\frac{e^{3 x}}{9}

    So, the result is: 3xe3xe3x3 x e^{3 x} - e^{3 x}

  2. Now simplify:

    (3x1)e3x\left(3 x - 1\right) e^{3 x}

  3. Add the constant of integration:

    (3x1)e3x+constant\left(3 x - 1\right) e^{3 x}+ \mathrm{constant}


The answer is:

(3x1)e3x+constant\left(3 x - 1\right) e^{3 x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                                  
 |      3*x           3*x        3*x
 | 9*x*e    dx = C - e    + 3*x*e   
 |                                  
/                                   
(3x1)e3x\left(3\,x-1\right)\,e^{3\,x}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-200200
The answer [src]
       3
1 + 2*e 
9(2e39+19)9\,\left({{2\,e^3}\over{9}}+{{1}\over{9}}\right)
=
=
       3
1 + 2*e 
1+2e31 + 2 e^{3}
Numerical answer [src]
41.1710738463753
41.1710738463753
The graph
Integral of 9*x*e^(3*x) dx

    Use the examples entering the upper and lower limits of integration.