Mister Exam

Other calculators

Integral of xe^(2x)cos(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |     2*x            
 |  x*E   *cos(5*x) dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} e^{2 x} x \cos{\left(5 x \right)}\, dx$$
Integral((x*E^(2*x))*cos(5*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. Use integration by parts, noting that the integrand eventually repeats itself.

      1. For the integrand :

        Let and let .

        Then .

      2. For the integrand :

        Let and let .

        Then .

      3. Notice that the integrand has repeated itself, so move it to one side:

        Therefore,

    Now evaluate the sub-integral.

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand :

          Let and let .

          Then .

        2. For the integrand :

          Let and let .

          Then .

        3. Notice that the integrand has repeated itself, so move it to one side:

          Therefore,

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Use integration by parts, noting that the integrand eventually repeats itself.

        1. For the integrand :

          Let and let .

          Then .

        2. For the integrand :

          Let and let .

          Then .

        3. Notice that the integrand has repeated itself, so move it to one side:

          Therefore,

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                    
 |                            /            2*x      2*x         \       2*x                         2*x
 |    2*x                     |2*cos(5*x)*e      5*e   *sin(5*x)|   20*e   *sin(5*x)   21*cos(5*x)*e   
 | x*E   *cos(5*x) dx = C + x*|--------------- + ---------------| - ---------------- + ----------------
 |                            \       29                29      /         841                841       
/                                                                                                      
$$\int e^{2 x} x \cos{\left(5 x \right)}\, dx = C + x \left(\frac{5 e^{2 x} \sin{\left(5 x \right)}}{29} + \frac{2 e^{2 x} \cos{\left(5 x \right)}}{29}\right) - \frac{20 e^{2 x} \sin{\left(5 x \right)}}{841} + \frac{21 e^{2 x} \cos{\left(5 x \right)}}{841}$$
The graph
The answer [src]
                   2        2       
   21   79*cos(5)*e    125*e *sin(5)
- --- + ------------ + -------------
  841       841             841     
$$\frac{125 e^{2} \sin{\left(5 \right)}}{841} - \frac{21}{841} + \frac{79 e^{2} \cos{\left(5 \right)}}{841}$$
=
=
                   2        2       
   21   79*cos(5)*e    125*e *sin(5)
- --- + ------------ + -------------
  841       841             841     
$$\frac{125 e^{2} \sin{\left(5 \right)}}{841} - \frac{21}{841} + \frac{79 e^{2} \cos{\left(5 \right)}}{841}$$
-21/841 + 79*cos(5)*exp(2)/841 + 125*exp(2)*sin(5)/841
Numerical answer [src]
-0.881224125080771
-0.881224125080771

    Use the examples entering the upper and lower limits of integration.