Integral of xdx/((x+2)(x+3)) dx
The solution
The answer (Indefinite)
[src]
/
|
| x
| --------------- dx = C - 2*log(2 + x) + 3*log(3 + x)
| (x + 2)*(x + 3)
|
/
∫(x+2)(x+3)xdx=C−2log(x+2)+3log(x+3)
The graph
-5*log(3) + 2*log(2) + 3*log(4)
−5log(3)+2log(2)+3log(4)
=
-5*log(3) + 2*log(2) + 3*log(4)
−5log(3)+2log(2)+3log(4)
-5*log(3) + 2*log(2) + 3*log(4)
Use the examples entering the upper and lower limits of integration.