Mister Exam

Other calculators


(xdx)/((x+1)*(2x+1))

Integral of (xdx)/((x+1)*(2x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |          x           
 |  ----------------- dx
 |  (x + 1)*(2*x + 1)   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{x}{\left(x + 1\right) \left(2 x + 1\right)}\, dx$$
Integral(x/(((x + 1)*(2*x + 1))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                    
 |                                                     
 |         x                  log(1 + 2*x)             
 | ----------------- dx = C - ------------ + log(1 + x)
 | (x + 1)*(2*x + 1)               2                   
 |                                                     
/                                                      
$$\int \frac{x}{\left(x + 1\right) \left(2 x + 1\right)}\, dx = C + \log{\left(x + 1 \right)} - \frac{\log{\left(2 x + 1 \right)}}{2}$$
The graph
The answer [src]
log(2)   log(3/2)
------ - --------
  2         2    
$$- \frac{\log{\left(\frac{3}{2} \right)}}{2} + \frac{\log{\left(2 \right)}}{2}$$
=
=
log(2)   log(3/2)
------ - --------
  2         2    
$$- \frac{\log{\left(\frac{3}{2} \right)}}{2} + \frac{\log{\left(2 \right)}}{2}$$
log(2)/2 - log(3/2)/2
Numerical answer [src]
0.14384103622589
0.14384103622589
The graph
Integral of (xdx)/((x+1)*(2x+1)) dx

    Use the examples entering the upper and lower limits of integration.