Integral of xdx/sqrt(5+4x) dx
The solution
Detail solution
-
Let u=4x+5.
Then let du=4x+52dx and substitute du:
∫(8u2−85)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫8u2du=8∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: 24u3
-
The integral of a constant is the constant times the variable of integration:
∫(−85)du=−85u
The result is: 24u3−85u
Now substitute u back in:
24(4x+5)23−854x+5
-
Now simplify:
12(2x−5)4x+5
-
Add the constant of integration:
12(2x−5)4x+5+constant
The answer is:
12(2x−5)4x+5+constant
The answer (Indefinite)
[src]
/
| _________ 3/2
| x 5*\/ 5 + 4*x (5 + 4*x)
| ----------- dx = C - ------------- + ------------
| _________ 8 24
| \/ 5 + 4*x
|
/
∫4x+5xdx=C+24(4x+5)23−854x+5
The graph
___
7 3*I*\/ 3
- -- + ---------
12 4
−127+433i
=
___
7 3*I*\/ 3
- -- + ---------
12 4
−127+433i
(-0.759777064460204 + 1.21294360408918j)
(-0.759777064460204 + 1.21294360408918j)
Use the examples entering the upper and lower limits of integration.