1/2 / | | x*atan(2*x) dx | / 0
Integral(x*atan(2*x), (x, 0, 1/2))
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=4, c=1, context=1/(4*x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=4, c=1, context=1/(4*x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=4, c=1, context=1/(4*x**2 + 1), symbol=x), False)], context=1/(4*x**2 + 1), symbol=x)
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ 2 | x atan(2*x) x *atan(2*x) | x*atan(2*x) dx = C - - + --------- + ------------ | 4 8 2 /
1 pi - - + -- 8 16
=
1 pi - - + -- 8 16
-1/8 + pi/16
Use the examples entering the upper and lower limits of integration.