1 / | | x*asin(a*x) dx | / 0
Integral(x*asin(a*x), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
The integral of is when :
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(SqrtQuadraticDenomRule(a=1, b=0, c=-a**2, coeffs=[1, 0, 0], context=x**2/sqrt(-a**2*x**2 + 1), symbol=x), Ne(-a**2, 0)), (PowerRule(base=x, exp=2, context=x**2, symbol=x), True)], context=x**2/sqrt(-a**2*x**2 + 1), symbol=x)
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
// / _____ ___________\ ___________ \ || | 2 / 2 / 2 2 | / 2 2 | ||log\- 2*x*a + 2*\/ -a *\/ 1 - a *x / x*\/ 1 - a *x 2 | ||----------------------------------------- - ---------------- for a != 0| || _____ 2 | || 2 / 2 2*a | a*|< 2*a *\/ -a | || | || 3 | || x | || -- otherwise | / 2 || 3 | | x *asin(a*x) \\ / | x*asin(a*x) dx = C + ------------ - ------------------------------------------------------------------------------ | 2 2 /
/ ________ | / 2 |asin(a) asin(a) \/ 1 - a |------- - ------- + ----------- for And(a > -oo, a < oo, a != 0) < 2 2 4*a | 4*a | | 0 otherwise \
=
/ ________ | / 2 |asin(a) asin(a) \/ 1 - a |------- - ------- + ----------- for And(a > -oo, a < oo, a != 0) < 2 2 4*a | 4*a | | 0 otherwise \
Use the examples entering the upper and lower limits of integration.