Mister Exam

Integral of xarcsinax dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |  x*asin(a*x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} x \operatorname{asin}{\left(a x \right)}\, dx$$
Integral(x*asin(a*x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of is when :

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

      PiecewiseRule(subfunctions=[(SqrtQuadraticDenomRule(a=1, b=0, c=-a**2, coeffs=[1, 0, 0], context=x**2/sqrt(-a**2*x**2 + 1), symbol=x), Ne(-a**2, 0)), (PowerRule(base=x, exp=2, context=x**2, symbol=x), True)], context=x**2/sqrt(-a**2*x**2 + 1), symbol=x)

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                                         //   /                _____    ___________\        ___________             \
                                         ||   |       2       /   2    /      2  2 |       /      2  2              |
                                         ||log\- 2*x*a  + 2*\/  -a  *\/  1 - a *x  /   x*\/  1 - a *x         2     |
                                         ||----------------------------------------- - ----------------  for a  != 0|
                                         ||                      _____                          2                   |
                                         ||                 2   /   2                        2*a                    |
                                       a*|<              2*a *\/  -a                                                |
                                         ||                                                                         |
                                         ||                              3                                          |
                                         ||                             x                                           |
                                         ||                             --                                otherwise |
  /                      2               ||                             3                                           |
 |                      x *asin(a*x)     \\                                                                         /
 | x*asin(a*x) dx = C + ------------ - ------------------------------------------------------------------------------
 |                           2                                               2                                       
/                                                                                                                    
$${{x^2\,\arcsin \left(a\,x\right)}\over{2}}-{{a\,\left({{\arcsin \left(\left| a\right| \,x\right)}\over{2\,a^2\,\left| a\right| }}-{{ x\,\sqrt{1-a^2\,x^2}}\over{2\,a^2}}\right)}\over{2}}$$
The answer [src]
/                       ________                                  
|                      /      2                                   
|asin(a)   asin(a)   \/  1 - a                                    
|------- - ------- + -----------  for And(a > -oo, a < oo, a != 0)
<   2           2        4*a                                      
|            4*a                                                  
|                                                                 
|               0                            otherwise            
\                                                                 
$${{-\arcsin \left| a\right| +2\,a\,\arcsin a\,\left| a\right| + \sqrt{1-a^2}\,\left| a\right| }\over{4\,a\,\left| a\right| }}$$
=
=
/                       ________                                  
|                      /      2                                   
|asin(a)   asin(a)   \/  1 - a                                    
|------- - ------- + -----------  for And(a > -oo, a < oo, a != 0)
<   2           2        4*a                                      
|            4*a                                                  
|                                                                 
|               0                            otherwise            
\                                                                 
$$\begin{cases} \frac{\operatorname{asin}{\left(a \right)}}{2} + \frac{\sqrt{- a^{2} + 1}}{4 a} - \frac{\operatorname{asin}{\left(a \right)}}{4 a^{2}} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\0 & \text{otherwise} \end{cases}$$

    Use the examples entering the upper and lower limits of integration.