Mister Exam

Other calculators


x(x^2-4x+5)dx

Integral of x(x^2-4x+5)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                    
  /                    
 |                     
 |    / 2          \   
 |  x*\x  - 4*x + 5/ dx
 |                     
/                      
0                      
$$\int\limits_{0}^{2} x \left(\left(x^{2} - 4 x\right) + 5\right)\, dx$$
Integral(x*(x^2 - 4*x + 5), (x, 0, 2))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                              3    4      2
 |   / 2          \          4*x    x    5*x 
 | x*\x  - 4*x + 5/ dx = C - ---- + -- + ----
 |                            3     4     2  
/                                            
$$\int x \left(\left(x^{2} - 4 x\right) + 5\right)\, dx = C + \frac{x^{4}}{4} - \frac{4 x^{3}}{3} + \frac{5 x^{2}}{2}$$
The graph
The answer [src]
10/3
$$\frac{10}{3}$$
=
=
10/3
$$\frac{10}{3}$$
10/3
Numerical answer [src]
3.33333333333333
3.33333333333333
The graph
Integral of x(x^2-4x+5)dx dx

    Use the examples entering the upper and lower limits of integration.