Mister Exam

Other calculators

Integral of x(x+2)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           2   
 |  x*(x + 2)  dx
 |               
/                
0                
01x(x+2)2dx\int\limits_{0}^{1} x \left(x + 2\right)^{2}\, dx
Integral(x*(x + 2)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    x(x+2)2=x3+4x2+4xx \left(x + 2\right)^{2} = x^{3} + 4 x^{2} + 4 x

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      4x2dx=4x2dx\int 4 x^{2}\, dx = 4 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: 4x33\frac{4 x^{3}}{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      4xdx=4xdx\int 4 x\, dx = 4 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 2x22 x^{2}

    The result is: x44+4x33+2x2\frac{x^{4}}{4} + \frac{4 x^{3}}{3} + 2 x^{2}

  3. Now simplify:

    x2(3x2+16x+24)12\frac{x^{2} \left(3 x^{2} + 16 x + 24\right)}{12}

  4. Add the constant of integration:

    x2(3x2+16x+24)12+constant\frac{x^{2} \left(3 x^{2} + 16 x + 24\right)}{12}+ \mathrm{constant}


The answer is:

x2(3x2+16x+24)12+constant\frac{x^{2} \left(3 x^{2} + 16 x + 24\right)}{12}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                             4      3
 |          2             2   x    4*x 
 | x*(x + 2)  dx = C + 2*x  + -- + ----
 |                            4     3  
/                                      
x(x+2)2dx=C+x44+4x33+2x2\int x \left(x + 2\right)^{2}\, dx = C + \frac{x^{4}}{4} + \frac{4 x^{3}}{3} + 2 x^{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
43
--
12
4312\frac{43}{12}
=
=
43
--
12
4312\frac{43}{12}
43/12
Numerical answer [src]
3.58333333333333
3.58333333333333

    Use the examples entering the upper and lower limits of integration.