Mister Exam

Other calculators


x(x-1)^3

Integral of x(x-1)^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           3   
 |  x*(x - 1)  dx
 |               
/                
0                
01x(x1)3dx\int\limits_{0}^{1} x \left(x - 1\right)^{3}\, dx
Integral(x*(x - 1)^3, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    x(x1)3=x43x3+3x2xx \left(x - 1\right)^{3} = x^{4} - 3 x^{3} + 3 x^{2} - x

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (3x3)dx=3x3dx\int \left(- 3 x^{3}\right)\, dx = - 3 \int x^{3}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

      So, the result is: 3x44- \frac{3 x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x22- \frac{x^{2}}{2}

    The result is: x553x44+x3x22\frac{x^{5}}{5} - \frac{3 x^{4}}{4} + x^{3} - \frac{x^{2}}{2}

  3. Now simplify:

    x2(4x315x2+20x10)20\frac{x^{2} \left(4 x^{3} - 15 x^{2} + 20 x - 10\right)}{20}

  4. Add the constant of integration:

    x2(4x315x2+20x10)20+constant\frac{x^{2} \left(4 x^{3} - 15 x^{2} + 20 x - 10\right)}{20}+ \mathrm{constant}


The answer is:

x2(4x315x2+20x10)20+constant\frac{x^{2} \left(4 x^{3} - 15 x^{2} + 20 x - 10\right)}{20}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                             4    2    5
 |          3           3   3*x    x    x 
 | x*(x - 1)  dx = C + x  - ---- - -- + --
 |                           4     2    5 
/                                         
x(x1)3dx=C+x553x44+x3x22\int x \left(x - 1\right)^{3}\, dx = C + \frac{x^{5}}{5} - \frac{3 x^{4}}{4} + x^{3} - \frac{x^{2}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-0.20.1
The answer [src]
-1/20
120- \frac{1}{20}
=
=
-1/20
120- \frac{1}{20}
-1/20
Numerical answer [src]
-0.05
-0.05
The graph
Integral of x(x-1)^3 dx

    Use the examples entering the upper and lower limits of integration.