Mister Exam

Other calculators


x(x-1)^3

Derivative of x(x-1)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         3
x*(x - 1) 
x(x1)3x \left(x - 1\right)^{3}
x*(x - 1)^3
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=(x1)3g{\left(x \right)} = \left(x - 1\right)^{3}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x1u = x - 1.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddx(x1)\frac{d}{d x} \left(x - 1\right):

      1. Differentiate x1x - 1 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 1-1 is zero.

        The result is: 11

      The result of the chain rule is:

      3(x1)23 \left(x - 1\right)^{2}

    The result is: 3x(x1)2+(x1)33 x \left(x - 1\right)^{2} + \left(x - 1\right)^{3}

  2. Now simplify:

    (x1)2(4x1)\left(x - 1\right)^{2} \left(4 x - 1\right)


The answer is:

(x1)2(4x1)\left(x - 1\right)^{2} \left(4 x - 1\right)

The graph
02468-8-6-4-2-1010-2000020000
The first derivative [src]
       3              2
(x - 1)  + 3*x*(x - 1) 
3x(x1)2+(x1)33 x \left(x - 1\right)^{2} + \left(x - 1\right)^{3}
The second derivative [src]
6*(-1 + x)*(-1 + 2*x)
6(x1)(2x1)6 \left(x - 1\right) \left(2 x - 1\right)
The third derivative [src]
6*(-3 + 4*x)
6(4x3)6 \left(4 x - 3\right)
The graph
Derivative of x(x-1)^3