1 / | | / y + 1 \ | |x | | |------ + 1| dx | \ y / | / 0
Integral(x^(y + 1)/y + 1, (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
The integral of a constant is the constant times the variable of integration:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ 2 + y
|x
|------ for y + 1 != -1
/ <2 + y
| |
| / y + 1 \ |log(x) otherwise
| |x | \
| |------ + 1| dx = C + x + ------------------------
| \ y / y
|
/
// 2 + y \
|| 1 0 |
||--------- - --------- for And(y > -oo, y < oo, y != -2)|
||y*(2 + y) y*(2 + y) |
1 + |< |
|| /1\ |
|| oo*sign|-| otherwise |
|| \y/ |
\\ /
=
// 2 + y \
|| 1 0 |
||--------- - --------- for And(y > -oo, y < oo, y != -2)|
||y*(2 + y) y*(2 + y) |
1 + |< |
|| /1\ |
|| oo*sign|-| otherwise |
|| \y/ |
\\ /
1 + Piecewise((1/(y*(2 + y)) - 0^(2 + y)/(y*(2 + y)), (y > -oo)∧(y < oo)∧(Ne(y, -2))), (oo*sign(1/y), True))
Use the examples entering the upper and lower limits of integration.