Mister Exam

Other calculators

Integral of (x^2)sinxx^3+1 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  / 2         3    \   
 |  \x *sin(x)*x  + 1/ dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(x^{3} x^{2} \sin{\left(x \right)} + 1\right)\, dx$$
Integral((x^2*sin(x))*x^3 + 1, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                                 
 |                                                                                                                  
 | / 2         3    \                            5                             2             4              3       
 | \x *sin(x)*x  + 1/ dx = C + x + 120*sin(x) - x *cos(x) - 120*x*cos(x) - 60*x *sin(x) + 5*x *sin(x) + 20*x *cos(x)
 |                                                                                                                  
/                                                                                                                   
$$\int \left(x^{3} x^{2} \sin{\left(x \right)} + 1\right)\, dx = C - x^{5} \cos{\left(x \right)} + 5 x^{4} \sin{\left(x \right)} + 20 x^{3} \cos{\left(x \right)} - 60 x^{2} \sin{\left(x \right)} - 120 x \cos{\left(x \right)} + x + 120 \sin{\left(x \right)}$$
The graph
The answer [src]
1 - 101*cos(1) + 65*sin(1)
$$- 101 \cos{\left(1 \right)} + 1 + 65 \sin{\left(1 \right)}$$
=
=
1 - 101*cos(1) + 65*sin(1)
$$- 101 \cos{\left(1 \right)} + 1 + 65 \sin{\left(1 \right)}$$
1 - 101*cos(1) + 65*sin(1)
Numerical answer [src]
1.12508111983116
1.12508111983116

    Use the examples entering the upper and lower limits of integration.