Mister Exam

Other calculators

Integral of (x+4)/(x^2(x-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |    x + 4      
 |  ---------- dx
 |   2           
 |  x *(x - 1)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{x + 4}{x^{2} \left(x - 1\right)}\, dx$$
Integral((x + 4)/((x^2*(x - 1))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                
 |                                                 
 |   x + 4                        4                
 | ---------- dx = C - 5*log(x) + - + 5*log(-1 + x)
 |  2                             x                
 | x *(x - 1)                                      
 |                                                 
/                                                  
$$\int \frac{x + 4}{x^{2} \left(x - 1\right)}\, dx = C - 5 \log{\left(x \right)} + 5 \log{\left(x - 1 \right)} + \frac{4}{x}$$
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-5.51729471179439e+19
-5.51729471179439e+19

    Use the examples entering the upper and lower limits of integration.