Integral of x^2+y^2+1 dy
The solution
Detail solution
-
Integrate term-by-term:
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫x2dy=x2y
-
The integral of yn is n+1yn+1 when n=−1:
∫y2dy=3y3
The result is: x2y+3y3
-
The integral of a constant is the constant times the variable of integration:
∫1dy=y
The result is: x2y+3y3+y
-
Now simplify:
y(x2+3y2+1)
-
Add the constant of integration:
y(x2+3y2+1)+constant
The answer is:
y(x2+3y2+1)+constant
The answer (Indefinite)
[src]
/
| 3
| / 2 2 \ y 2
| \x + y + 1/ dy = C + y + -- + y*x
| 3
/
∫((x2+y2)+1)dy=C+x2y+3y3+y
3/2
/ 2\ _________
76 2 \16 - x / / 2 / 2\
-- + 4*x - ------------ - \/ 16 - x *\1 + x /
3 3
4x2−3(16−x2)23−16−x2(x2+1)+376
=
3/2
/ 2\ _________
76 2 \16 - x / / 2 / 2\
-- + 4*x - ------------ - \/ 16 - x *\1 + x /
3 3
4x2−3(16−x2)23−16−x2(x2+1)+376
76/3 + 4*x^2 - (16 - x^2)^(3/2)/3 - sqrt(16 - x^2)*(1 + x^2)
Use the examples entering the upper and lower limits of integration.