Mister Exam

Other calculators

Integral of x^2+y^2+1 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       4                     
       /                     
      |                      
      |      / 2    2    \   
      |      \x  + y  + 1/ dy
      |                      
     /                       
   _________                 
  /       2                  
\/  16 - x                   
$$\int\limits_{\sqrt{16 - x^{2}}}^{4} \left(\left(x^{2} + y^{2}\right) + 1\right)\, dy$$
Integral(x^2 + y^2 + 1, (y, sqrt(16 - x^2), 4))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of is when :

      The result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                    
 |                             3       
 | / 2    2    \              y       2
 | \x  + y  + 1/ dy = C + y + -- + y*x 
 |                            3        
/                                      
$$\int \left(\left(x^{2} + y^{2}\right) + 1\right)\, dy = C + x^{2} y + \frac{y^{3}}{3} + y$$
The answer [src]
                     3/2                        
            /      2\         _________         
76      2   \16 - x /        /       2  /     2\
-- + 4*x  - ------------ - \/  16 - x  *\1 + x /
3                3                              
$$4 x^{2} - \frac{\left(16 - x^{2}\right)^{\frac{3}{2}}}{3} - \sqrt{16 - x^{2}} \left(x^{2} + 1\right) + \frac{76}{3}$$
=
=
                     3/2                        
            /      2\         _________         
76      2   \16 - x /        /       2  /     2\
-- + 4*x  - ------------ - \/  16 - x  *\1 + x /
3                3                              
$$4 x^{2} - \frac{\left(16 - x^{2}\right)^{\frac{3}{2}}}{3} - \sqrt{16 - x^{2}} \left(x^{2} + 1\right) + \frac{76}{3}$$
76/3 + 4*x^2 - (16 - x^2)^(3/2)/3 - sqrt(16 - x^2)*(1 + x^2)

    Use the examples entering the upper and lower limits of integration.